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THE OPTIMIZATION OF MULTISTAGE ROCKETS
. WITH RESPECT TO COST

By Paul R. Hill
NASA Langley Research Center

ABSTRACT /;1‘7:;6/

A mathematical method is presented for the computation of the stage
welghts of multistage rocket systems to give minimum rocket-system cost
for a given mission. The mission is assumed presentable in terms of pay-
load weight and a velocity requirement. The rocket system can have any
number of stages of various types of rockets. Besides taking into account
the usual factors of individual-stege specific impulse and structural
weight fraction, the individual-stage specific cost or cost per pound is
also included. The solution is presented in the form of a fairly concise
set of formulas for the stage welght ratios. If the stage specific costs
are dropped from the equations, the method gives the same results as the
simpler concept of optimization with respect to welght. Thus both methods
are included in one technique. Two examples are given which show that
great differences in stage welght ratios result when optimizing with
respect to weight or cost. The relative vehicle costs by the two methods
differ by 25 percent in the first example and 300 percent in the second
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~ THE OPTIMIZATION OF MULTISTAGE ROCKETS

WITH RESPECT TO COST

By Paul R. Hill
NASA Langley Research Center

INTRODUCTION

To accomplish space missions requiring the high velocities associated

with escape from the earth, tandem-staged rocket systems are essential.
© . With the current technology available for many types of rockets, the
selection of an appropriate number of stages, the selection of the type
of motor for each stage, and finally the determination of the correct
weight of each of the stages are more complex tasks than ever before.
The theme of the present paper is that the selection of the booster system
and the optimum rocket sizes to be used should be based on the economics
of a successful mission achievement. The substance of the paper is an
optimization method to accomplish this result. The complex situation in
which we find ourselves with respect to the wealth .of possible motor types
from which to choose may be better understood if & few remarks are given
pertaining to the history of rocket motors and staged rocket systems.

The earliest recorded use of rockets occurred in 1232 A.D. when a
son of Genghis Khan attacked Kaifeng, the capital of Honan province,
China, with solid-propellant rockets. Such rockets were also used effec-
tively by Indian soldiers against the British in the British Indian
Campaign. As a result of this experience the British developed their own
solid-propellant rockets which were used against Napoleon and against the
Americans in the War of 1812. The use of rocket artillery gave way to
the cannon for a time but was revived in World War II, being employed
extensively by the Russians at Stalingrad and by the Allies in the Pacific
and European theaters in single-stage ground-to-ground and air-to-ground
applicationi. The NACA also employed two-stage solid-propellant rocket
systems for transonic and supersonic aerodynamic tests at their Wallops
Island launch base during the latter part of World War II.

Liquid-propellant rocket motors were introduced experimentally by
R. H. Goddard in 1926 and in practice by the Germans in World War II in
their V-2 application that used alcohol and liquid oxygen as propellants.
Subsequently the Russians and Americans developed liquid-propellant IRBM's
and ICBM's that utllized petroleum fuel.

Needing higher speeds for aerodynamic testing, the NACA developed
three-, four-, five-, and six-stage solid-propellant rocket vehicles and
demonstrated the good rellabllity of these multistage vehicles. Next,
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the U.S. military services, with the cooperation of American industry,
developed the three-stage Polaris, the three-stage Minuteman, and the
two-stage Pershing. These vehicles gave the United States a complete
second generation of solid-propellant ballistic missiles. Concurrently
the NASA developed the four-stage solid-propellant rocket orbital Scout
system.

The advent of the satellite witnessed the early use of liquid-
propellant lower stages with solid-propellant upper stages. Recently,
upper stages with more exotic storable and restartable liquid propellants
have been utilized, as in the Atlas-Agena system. Hydrogen-fuel upper
stages are under current development to obtain the highest possible spe-
cific Impulse, as in NASA's Saturn rocket vehicles. Extremely large
solid-propellant rockets are under consideration for use in alternate
systems, mainiz as replacements for first stages.

This short history 1llustrates the ever growing range of possible
rocket types to choose from and the ever growing complexities of rocket
systems. Note that while earlier space applications used solid-propellant
rockets for upper stages, current thinking would employ them as the first
stage. Thus the permutation, or order, is an additional consideration in
multistaged systems.

Optimization studies can be expected to strongly aid or guide the
choice of motor type for each stage and to dictate the appropriate size
or weight for each stage. The older optimization methods had as their
objective the optimization of performance or, what amounts to the same
thing, minimization of total welght for a given performance as dictated
by the mission. Numerous articles have been written glving mathematical
methods for such optimization. The earliest methods took into account
only the stage jet velocities, but later methods (refs. 1 to 3) also took
into account the stage structural mass fractions, which is the fraction
of inert (nonpropellant) weight in each stage. With the advent of space
programs in which the rocket systems will cost millions or even billions
of dollars, it seems very important that the objective of the optimization
system be to minimize the cost. This is currently being done by machine
programing fMethods whereln all possible parameters are varied systemati-
cally in what amounts to a "trial-and-error" procedure feasible only
because of the high speeds of modern computing machines. The method
herein presented is, by contrast, a mathematical method for the calcula-
tion of optimum staging ratios for minimum cost from given formulas. The

labor rnnni red ig =1'1cr'h+ 'hp-\‘ng +the nnmn ag that reauired bv the older

el Sl
methods which minlmized weight.

The method applies to any number of stages and takes into account
the stage Jet velocities, stage mass fractions, and stage specific costs
(dollars per pound). Stage specific costs are, in turn, determined by
the type of rocket and the number of anticipated firings. The effect of
reliability is also considered.
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For systems like the Polarls or Minuteman where all stages are
similar and where dollar costs per pound for each stage are not very
diffewent, optimization with respect to gross weight may be expected to
approximate a minimum-cost vehicle. However, when stages with greatly
different costs per pound are used, as when liquid-fuel stages are com-
bined with the cheaper solid-fuel stages, optimization with respect to
gross welght is misleading, as will be shown by two examples.

No mathematical optimization procedure for staged rockets can be
expected to predict precise final results for either gross weight or
cost, and such'methods should not be expected to replace detailed design
studies. However, optimization procedures can be expected to permit the
selection of the best combination of rockets for the system and to orient
design studies quickly, Furthermore, the effort expended in making a few
optimization calculations based on a mathematical procedure is almost
nothing compared with the value of such calculations in selecting systems
and in orienting the laborious detalled welght and cost studlies which
must be done eventually for the system selected.

SIMBOLS
c stage specific cost, hollars/lb
Cc | total rocket cost per firing, dollars .
Cs total rocket cost per successful firing, dollars
g . acceleration due to gravity, ft/sec
; "
my staging mass ratio, o7 T TN W
J+1 J+2 n L
n tg}al number of stages in tandem
D | number of rockets in & stage

)4 stage relisbility, or probability of successful operation

We + Wayn + eee + W + Wy
J JT i L

T Jth stage mass ratio,

v Jet velocity, ft/sec

Vi ideal velocity at nth stage burnmout
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W - stage weight, includes interstage structure and controls, 1b

Wo *° gross weight, 1b

WL" - payload weight, 1b

B stage structural welght fraction

A Lagrange multiplier

¢ restraint function

Subscripts: |

1,2,3,c00fye0en let, 2nd, 3rd, ... Jth, ... nth stages

The stage weights W must include the weight of interstage connec-
tions and the weight of controls. The stage structural weight fractions 8
must include these weights also. The structural weight fraction is defined
as the ratio of the stage weight at stage burnout to the stage welght
loaded with propellant.

ANALYSIS

‘ The factors assumed known for rockets of a given type are: struc-
| tural weight fractions B,j , effective jet velocities Vis and stage cost

per pound cj. The quantities ‘to be found are: stage mass ratios rj
and ‘stage weights Wy for minimum mission propulsion cost. In this anal-
ysis it is assumed that each BJ and cy 1s constant within the limits

of weight variation considered for a given stage.

The cost of an n-stage rocket system 1s given by
»

' _ (1)
¥y | \ J

s




-5

e e

obtained from equation (2) and given by

To obtain theuébétmper successful propulsion mission, we must divide
the cost of the vehicle and payload by the product of the stage
reliahilities. This cost includes the payload cost.

_ Clwl + C2W2 + .. + ann + CLWL

Cs (1a)
PlP2 LR 2N Pn

The stage reliability depends on the reliabllity of the rocket or
rockets comprising the stage and on the number of such rockets clustered
together. Assuming that the number of motors clustered is the same and
that the stage reliability 1s constant, it is easy to show that the same
stage welghts result irrespective of whether equation (1) or (1la) is used
in the derivation of the optimization formulas.

The cost is to be minimized subject to the condition that a given
payload is accelerated to a given velocity, which of course depends on
the assigned mission. The usual optimization procedure is to assign an
ideal (or gravity-free_-drag-free)velocity Vy{ that experience or tra-

Jectory computation lndicates is the equivalent of the given mission
actual burnout velocity. The speed equation is then extremely simple;

Vi =vy logry + vp log Tp + ««o + vV log T (2)

s

The Lagrangian multiplier method is convenient for this problem.
The Lagrangian equation for this case is simply

L=C+N (3)

where C 1s the sum to be minimized and ¢”Ais’the velocity restraint

'
¢ = Vi - vy logry -Vologrp - «eo =V log Ty (&)

Substituting equations (1) and (4) into equation (3) gives

LomogWy + oGl ¥ eee + il +MVy = vy log 1y

- V2l°8 ral- s = Vn log rn) (5)
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Taking the derivatives of the Lagrangian equation (5) with respect to
the weights WJ and equa.ting to zero ylelds
L)

BWJ I 3
or
B .S, Constant \ (6)
an A , . : ,
Note that -B-L can be ‘expressed as
BWJ
3¢ 3¢ ory . o Br2 . . ﬂ_ Br (
= Y se e 7)

Getting ég—, §¢—-‘, eté., of equation (7) from equation (4) and combining
arl ara '
equation (7) with equation (6) yields

S N WO S SR/ R (8)

. C ’ or
where J takes all values from 1 to n. The expressions for _T,Tl.’
or J
—2, etc., can be obtained from the definition of the staging ratios
oy ,
» 7
Wy + Wo + eee + Wy + Wy

rl =

- (9)

y -

2 .

€LCe

1‘23
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Substituting the values of 5 5 etc., in equation (8) and using

the_: following identities:

W

0
e = e
1 Wo"wl

Yo
= S (10)
12 Wo - W = ¥Wo _
‘. Yo tc
o, Moy = , ete.
3 Wo - Wl - W2 - W3

-

to simplify equation (8) yields the following set of equations for calcu-
lating the stage mass ratios ry:

W
'ig' = :'_i'(l = Blrl) (ll)
TPy = 1 - .02(w°/ N :2:; (L3 (12)
- 1 -
r333 “q . C3(Wo/}\L+ Vl(ri.z)mlml + Vaml(ra l) (13)
A ok ; -1 -1
nfy - 1- 4(W°/7\) + vl(rl l) + v2ml(r2 ) + '\r3mlm2(r5 ) )

A | Ml

c5(Wo/>\) +v1(rl - l) +_v2ml(r2 - 1) +Vamm, (r3 - l) + w'rumlm2m3 (rh - l)
Ve

TsPg = 1 -

(15)
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Formulas for greater numbers of stages than five can now be written by
inspection. All staging ratios can be calculated by the formula

STt - Bg) | | (16)

l - ﬁJrJ

for example

‘ m1=r1§1'31>

l" B1r~|

b e

The procedure to 6Btain the stage mass ratios 1s to take a trial
~ value of r; and calculate WO/A from equation (11), rp from equa-

tion (12), r3 from equation (13), rj from equation (14), and I's

from equation (15), ete., according to the number of stages. With each
step, the values of m required are obtained from equation (16). Sub-
stitute the trial set of r's in equation (2) to calculate the ideal
veloclity. Revise r; and recalculate the other r's as required to

give the desired ideal velocity. It should be noted that each set of
r's defines a minimum cost set of rockets for the corresponding values
of Vi as given by equation (2).

Once the stage mass ratlios have been determined, calculate the stage
welghts from the known values of my, starting with the last stage.

L3Ny -

Wy "(mn = )WL

Wy = mg(mpo1 - 1)WL | . (a7

/ a Voo = mgmy g (myp - L)Wy, ete.

J

Then, the costs are obtained from equations (1) and (1a).

In order to calculate the minimum weight set of rockets for a given
ideal velocity performance, let the values of specific cost ¢y, cp,
¢z, ¢y, etc., in equations (11) through (15) equal unity. The <c's +toen

disappear from these equations. Then follow exactly the same procedure
outlined above to obtain minimum cost using equations (11) through (17).




EXAMPLE 1

?

Let it be required to send a payload of 16,600 pounds to an escape
speed of 36,000 ft/sec. Trajectory studies avallable indicate an ideal
velocity of 40,000 ft/sec 1s required. It 1s desired to investigate a
system composed of a clustered solid-fuel first stage, together with
clustered hydrogen-fuel second and third stages. The costs per pound for
the different stages, together with the values of B and v, are listed
in table I. From these data and from equations (11), (12), (13), and (2),
the stage mass’ ratios for minimum cost were determined by the procedure
described. These ratios and the stage welghts and costs are also given
in table I, case A.

In order to minimize the welght, the same procedure and equations
are used except that the cost per pound is taken to be the same for all
stages; that is, €y =Cp =¢3 = l. The c's then disappear from equa-

tions (11), (12), and (13). Using the same dssumptions as in the first
part of Example 1, the resulting stage weights and costs were computed
and are given in teble I, case B. These results are identical to those
obtalned by other methods, such as reference 1.

The total cost per shot and weight per shot for both cases are shown
in the last column of table I. For the minimum-cost solution, it is seen
that the cost is only 0.76 of the cost for the minimum-weight solution,
although the weight is 1.21 that of the minimum-weight solution. To
obtain the cost per successful shot, the stage reliabilities must be esti-
mated. This will be demonstrated in example 2.

LY

EXAMPLE 2

The second example will be a four-stage vehicle with the same require-
ment; namely, a payload of 16,600 pounds and an ideal velocity of
40,000 ft/sgc. Consider a solid-fuel first stage with three hydrogen-
fuel upper stages: Case A, minimize cost; Case B, minimize weight.

The costs per pound for the different stages, together with the
values of B and v, are listed in table II. Making use of the same
procedures as before with equations (11), (12), (13), (14), and (2), the
stage mass ratios for minimm cost were computed. These together with
the stage welghts and costs are shown in table II, case A.
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Minimization of welght is accomplished by putting

& = = - =
c1 = c2 = c3 =cy = 1

in equations (11) to (14) and results in a value of r; less than 1.

This indicates a negative first stage, which of course is impossible.
Let r; =1, which means that the rocket system would not bave a solid

first stage but would consist of & three-stage hydrogen system, having
the stage welghts and stage costs per shot shown in table II, case B.

Since we are now comparing rockets with different numbers and types
of components and consequently different reliabilities, the rocket cost
comparison must be baséd on the cost per successful rocket mission. For
simplicity in the following, the control reliability is not considered.
For our purpose let us assume the number of motors in parallel shown in
table IXI. We also assume that the relisbility of each hydrogen motor is
0.96 and that the reliability of each solid motor is 0.99. Each stage
reliability can be estimated by raising the motor reliability to a power
equal to the number of stages in parallel. Thus for case A:

Py = (0.99)% = 0.9703
Py = (0.96)" = 0.8493
Py = (0.96)2 = 0.9216
. ' 1
P, = (0.96)" = 0.9
P1?2P3Ph = 0,7291
From eqpati?p (1a), allowing a payload cost of $10 million:
2 3,000
. = 23,783,000 . 435 620,000
8" T o.eo1 7

per successful shot, including payioad.
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For case B (continuing with the fictitious first stage):

A Y

»
Py =1

P, = (0.96)1 = 0.520k
P5 = (0.96)" = 0.8493
) Py = (0.96)1 = 0.96

P\ P PsP), = 0.h2k3

and

Cq = 2222241900 . 480,067,000

per successful shot, including payloads. This value emphasizes the impor-
tance of reliability.

In example 2 there is about $9 million difference in cost per shot
fired but there is about $47 million per successful shot difference
between optimizing with respect to cost and optimizing with respect to
performance.

1. Hall, H. H., and Zambelle, E. D.: On the Optimization of Multistage
Rockets. ~dJet Propulsion, Vol. 28, July 1958, p. 463.

2. Subotowi?:z y Mc: The Optimization of the N-Step Rocket With Different
Construction Parameters and Propellant Specific Impulses in Each
Stage. Jet Propulsion, Vol. 28, July 1958, p. 460.

3. Coleman, John J.: Optimum Stage-Welght Distribugion of Multistage
Rockets. ARS Journal, Vol. 31, No. 2, Feb. 1961, p. 259.
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Case A;
Minimum
cost

Casé B:
Minimm
weight

e, $/ . ..
B e v .

I, sec ..

v, ft/sec

r L L] ®. » .
W, 1b v . .
cW, $ ..

W, 1b ...
W, $ ..

»
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TABLE I

(Example 1)

Stage 2

Stage 1 " Stage 3
6 26" 26

0.1k4 0.14 0.1k

254 k20 420

8,179 13,52k 13,52k
3.166 3.098 3.098
1,429,000 289,300 61,500
8)576)000 7:5231000 1:599:000
1.630 3.809 3.809
667,300 701,000 99,900
%,004,000 18,226,000 2,597,000

__ THREE-STAGE VEHICLE: ONE SOLID AND TWO HYDROGEN-LOX

Total weight
and
Cost /Shot

1,779,800
17,698,000

1,468,200
24,827,000
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TABLE II

.

. (Example 2)
FOUR-STAGE VEHICLE: ONE SOLID AND THREE EYDROGEN-LOX

[Payloa.d, 16,600 1b; cost, $10,000,000; V4 = 40,000 fh/sec]

Stage 1 Stage 2 Stage 3 Stage 4
e, $/1v . . . 6 26 26 26
B o o o o« . 0.1k 0.14 0.14 0.14
v, ft/sec . = 8,179 13,524 13,52k 13,524
(v v v v .. 2.751 2.1858 2.1858 2.1858
W, .... 93,480 208,100 76,830 28,360
W, $. ... 5,637,00(3) 5,l+u,oog 1,998,000 737,000
De o oo o0 2 1
Poevewooo 0.9703 0.8493 0.9216 0.960
. Case A: 4 L
Minimum ¢
cost 2 W3 = 1,252,770 1b Z cyWy = $13,783,000/shot
1 : 1

- 0.7291

v, ft/sec . .
T o o ¢ o o o
W, 1b « o o .
W, $. ..
P e oo oo \
Case B: [P v v oo o
‘Minimum < » 4 i
welght -
Co 2 2
. 33,981,000  in~ ~n
Cg = <=2
L 0.4243%

Cg = 23,783,000 $32,620,000/successful shot

None 812,490 13,524 13,524

2.513" 2.867 2.867

1
0 657,360 . 213,24 5L,T70
0 17,091,000 5,544,000 1,346,000
(o}
1

16 L4 1
0.5204 0.8493 0.96

| Z Wy = 922,370 1b Z cjWy = $23,981,000/shot

!

= $00,007,000/successful shot

8Adjusted for low-altitude operation.




